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Abstract

Matrix balancing is a term that describes the process of altering the elements of a
matrix to make it conform to known regularity conditions while still remaining �close�
to the original matrix� Often the regularity conditions relate only to the row and col�
umn sums� which yields problems having a desirable �network� structure� We describe
an application in telecommunication demand forecasting that additionally requires the
matrix to be symmetric� Although this requirement destroys the network constraint
structure� we show that for certain objectives row and column sum conditions are su��
cient to ensure symmetry� In addition� we describe a rounding procedure for generating
heuristic integer solutions�



The problem of adjusting the elements of a matrix so that they satisfy certain con�
sistency requirements but still remain �close� to the original matrix is generically referred
to as matrix balancing� Matrix balancing problems arise in a wide range of practical con�
texts that include accounting� transportation� and demographics� These and several other
applications are reviewed in an excellent overview by Schneider and Zenios �����

In a typical matrix balancing problem� we have a matrix that estimates certain quanti�
ties of interest� but these estimates do not satisfy consistency requirements that the actual
values are known to satisfy� An example might be estimating the elements of a transition
probability matrix which we know to be doubly stochastic� Consistency with the doubly
stochastic property requires that the rows and columns sum to one� The doubly stochas�
tic matrix is an example of one of two types of matrix balancing problems discussed by
Schneider and Zenios ����� They are

� adjusting the elements of a matrix so that the row and column sums equal certain
prescribed values	

� adjusting the elements of a square matrix so that its row and column sums are equal
to each other� but not necessarily to any prescribed values�

Both the application we consider� and the doubly stochastic condition mentioned above
yield matrix balancing problems of the 
rst type�

The conditions imposed on the row and column sums are called balance conditions� and
a matrix that satis
es the balance conditions is said to be balanced� In the applications
considered by Schneider and Zenios ����� the balance conditions relate only to row and
column sums� More generally� the balance conditions can be restrictions on the sums of
various combinations of matrix elements� �See� for example� Censor and Zenios ����
 The
fair representation problem considered by Balinski and Demange ��� is one example� In the
most general case� the balance conditions can be any set of linear restrictions on the matrix
entries�

For a particular set of balance conditions there may be a large number of balanced
matrices� but in matrix balancing� we seek a balanced matrix that is close to the original
matrix� Schneider and Zenios ���� review several methods for obtaining such matrices�
These methods typically fall into one of two categories� �
 scaling methods ��� �� �� ���	 and
�
 mathematical programming methods ���� ���� Of the two approaches� the mathematical
programming�based methods are more �exible in the sense that they are easily adapted
to accomodate changes in the underlying model� such as including bounds or objective
weights ����� The mathematical programs that result from many matrix balancing problems
are nonlinear network �ow problems that are solved quite e�ciently using general purpose
nonlinear network solvers such as that of Mulvey and Zenios ����� However� the applicability
of network �ow models depends upon the type of balance conditions that are imposed�

In this paper� we consider a problem that arises in telecommunication demand fore�
casting and use it to motivate discussion of variations on matrix balancing that incorporate
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symmetry and integrality conditions� The symmetry requirement essentially changes the
constraints of our model from those of a network �ow problem to those of a matching prob�
lem� However� we show that for certain intuitively appealing objective functions� standard
matrix balancing formulations do� in fact� yield optimal continuous solutions� Ultimately�
our goal is to produce symmetric integer matrices� This additional requirement transforms
our problem to one of 
nding a perfect b�matching that optimizes a convex separable non�
linear objective� While it may be the case that this problem is infeasible� we can always
identify an �almost�perfect� b�matching that suits the needs of this particular application�

� The Telecommunications Demand Forecasting Problem

Our application arises in forecasting demands between wirecenters in a telecommunication
network� These forecasts are used in a variety of network planning activities� Placing and
sizing links and switches would be among the most important�

The particular demands that we consider are for symmetric broadband services or nar�
rowband services� like ordinary voice telephone� These services involve symmetric two�way
communication� so meaningful forecasts for such products should� likewise� be symmetric� A
symmetric forecast requires that the forecasted demand from wirecenter A to wirecenter B
be the same as that from B to A�

It is often the case that there are no historical measurements of inter�wirecenter traf�

c� but there are measurements or forecasts of the aggregate amount of demand at each
wirecenter� Given the aggregate demands at the wirecenters �either measured or forecast
�
econometric models are used to disaggregate these values to obtain forecasts for the inter�
wirecenter demands� While these econometric forecasts contain valuable information� they
are not typically symmetric� so they cannot be used directly for planning�

This is the point at which our application begins� We are given a matrixM that contains
inter�wirecenter forecasts derived from econometric models� An element mij represents the
forecast for the demand from wirecenter i to wirecenter j� The elements along the diagonal
are forecasts of within�wirecenter demand� The forecasts are all integer and the sum of the
forecasts along any row is equal to the forecast of the aggregate demand at the associated
wirecenter� Our goal is to 
nd another matrix that is �close� to M � that preserves desirable
properties that M already possesses� but is also symmetric� The particular properties of
M that we wish to preserve are� integrality	 its row sums	 and its ratio between intra�
and inter�wirecenter tra�c� The reason for imposing the integrality requirement is simply
that these demands would necessarily be integer amounts� If our model does not produce
integer forecasts� they would likely be obtained by some ad hoc means� We preserve the
ratio between intra� and inter�wirecenter tra�c only because there may be some inherent
di�erence in the forecasts�for instance� we may have better data on intra�wirecenter tra�c�
Preserving this ratio is not really a hard constraint but is more a guideline to prevent altering
the character of the solution too much� As a result� this particular condition can be�and
ultimately is�relaxed in a controlled way to obtain an integer solution�
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Figure �� Overview of the demand forecasting process�

An overview of the demand forecasting process is provided in Figure �� The 
rst two
steps produce the aggregate and disaggregate forecasts� respectively� The metholodology
underlying these processes is described in detail in ���� ���� This paper addresses only the

nal step in which the demands are modi
ed to conform to known regularity conditions�
This 
nal step seeks a matrix that is close to the matrix� M � computed in the second step
and has the following properties�

�� it has all integer entries	

�� its row sums are equal to those of M 	

�� it is symmetric	 and

�� its diagonal is the same as that of M �

Note that given the second condition� 
xing the diagonal is equivalent to 
xing the ratio
between intra� and inter�wirecenter demand at each wirecenter� The last three conditions
could be considered our �balance conditions��

One 
nal point relating to our application is that the techniques we develop will ul�
timately be imbeded in decision support tools used by network planners� This brings up
several issues that may not be of concern in more theoretical treatments of this problem�
First� the procedures are likely to be used in tools that are somewhat interactive� so they
should be fast on moderate�sized problems of perhaps several hundred nodes� Second� the
software employed should be as general as possible �without sacri
cing e�cieny
 so that
it is adaptable to variations in the underlying model� Third� the algorithm should always
produce a solution to a reasonable instance of the problem� In this case� we consider a
problem instance to be �reasonable� whenever a balanced continuous solution exists� Our
application requires that we provide an integer solution for any reasonable instance�

Of course� it�s simple to demonstrate that even when a balanced matrix exists� a bal�
anced integer matrix may not� A simple � � � example su�ces� Suppose our matrix of
forecasts is �

�� � � �
� � �
� � �

�
�� �

We seek a new matrix �
�� � a b

a � c

b c �

�
�� �

�



whose entries a� b� and c are the unique solution to the system

a � b � �� ��


a � c � ��

b � c � ��

The solution is a � �
� � b �

�
� � and c �

�
� � Hence� no balanced integer matrix exists�

To provide an integer solution we need to relax some of the constraints� For the current
application� we will be allowed alter any diagonal element by one� in order to assure that
an integer solution �albeit to a relaxed problem
 can be found�

By allowing this �exibility� a solution to the above problem is immediately available��
�� � � �
� � �
� � �

�
�� �

We examine these feasibility issues in considerable detail in the next two sections� Our
reason for mentioning them here is simply to point out that relaxing the 
xed�diagonal
requirement is critical to producing integer solutions�

� Striking a Balance

For the time being� we will omit the integrality requirements and examine the continuous
version of the problem� Here� the main di�erence between our problem and those considered
by Schneider and Zenios is the symmetry requirement� Unfortunately� enforcing symmetry
in the constraints of the optimization model transforms it from a nonlinear network model
to a more general linearly constrained nonlinear program� Solving these more general prob�
lems typically requires more time and more sophisticated software� Thus� it is certainly
advantageous to employ network models and solution techniques wherever possible� One
of our goals in this section is to show that it�s possible to produce continuous symmetric
matrices with the desired properties using network models�

��� A brief review of matrix balancing

We begin our discussion of optimization approaches by presenting a standard matrix bal�
ancing formulation for producing matrices with prescribed row and column sums� This
formulation appears in ����� Suppose that we are given an n � n nonnegative matrix M

and positive vectors s and d� both in �n� that provide target row and column sums� The
associated matrix balancing problem can be written

�MB��
minimize

X
i�j

fij�xij
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Figure �� A matrix and it�s associated transportation network�

subject to�
X
j

xij � si � i � �� � � � � n

X
i

xij � dj � j � �� � � � � n

xij � �� � i� j � �� � � � � n

xij � � only if mij � ��

The constraints in this model can be viewed as the �ow�balance equations in an as�
sociated transportation problem� Figure � provides an example of a small matrix and its
representation as a transportation network� There is one left�hand node associated with
each row of M and one right�hand node associated with each column of M � There is a
link from left�hand node i to right�hand node j whenever the corresponding matrix element
mij of M is nonzero� Left�hand node i has supply si� while right�hand node i has demand
di� To complete the network �ow description of the problem� we associate a cost fij�xij

of sending xij units of �ow on the link from i to j and try to minimize the total cost of
satisfying demands� The optimal �ows xij provide the new balanced matrix�

The objective function employed in matrix balancing is typically separable� nonlinear�
and convex� The role of the objective is clearly to penalize deviations from the original
matrix� Nonlinear objectives are attractive because they promote balance among the de�
viations by penalizing large deviations disproportionately more� Schneider and Zenios ����
note that quadratic and entropy penalty functions are the ones that are typically used in
practice�

Quadratic objective functions that minimize the �weighted
 sum of squared deviations
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from the target matrix have been more widely studied� For problem �MB�� we obtain the
quadratic penalty objective by letting

fij�xij
 � wij�xij � mij

�� ��


where the wij �s are nonnegative weights� The resulting problem has a separable quadratic
objective and transportation constraints� Bachem and Korte ��� ��� Cottle et al� ���� and
Klincewicz ���� all designed solution algorithms that exploit the inherent structure of such
problems� More recently� Cosares and Hochbaum ��� have shown that both the continu�
ous and integer versions of the resulting quadratic transportation problem are solvable in
strongly polynomial time for a 
xed problem size� �Note� Check to make sure that this
is still true when bipartite graph isn�t complete�� Arbitrary instances of the real�valued
problem are solvable in polynomial time by virtue of a result of Minoux ����� Polynomial
solvability is also guaranteed by more general results on the polynomial solvability of convex
quadratic programs� such as those of Monteiro and Adler ����� Minoux ���� and Hochbaum
and Shantikumar ���� provide polynomial�time algorithms for the integer�valued problem�

Alternatively� the entropy objective de
nes

fij�xij
 � wijxij

�
ln�

xij

mij

� �

�
�

Many of the common scaling algorithms for matrix balancing implicitly optimize an entropy�
like function� �See� for example� ��� ��� ���
 Zenios� Drud and Mulvey ���� employ entropy
functions in the context of network models for matrix balancing� The integer version of the
problem is polynomially solvable because convex cost network �ow problems are polynomi�
ally solvable ���� ���� �See also ����


��� Symmetric balancing

With the description of the above problem in mind� we return to the continuous version of
the telecommunications balancing problem� Note that the preceding model explicitly 
xes
some of the matrix elements to zero by omitting the associated link from the model� This
presumes that a value of zero in the original matrix re�ects an �impossible transaction��
Such assumptions are not necessarily called for in our telecommunication model� but one can
certainly imagine instances where analogous assumptions are meaningful� Consequently� we
formulate subsequent models with similar restrictions� but note that removing them does
not impact our analysis in any way�

We now present the following symmetric matrix balancing formulation

�SMB��
minimize

X
i�j

fij�xij


subject to�
X
j

xij � si� � i � �� � � � � n ��


�



xij � xji� � i� j � �� � � � � n ��


xii � mii� � i � �� � � � � n ��


xij � �� � i� j � �� � � � � n

xij � � only if mij or mji � ��

where si �
P

j mij� Note that this model includes each matrix element in the formulation�
like the 
rst model in the previous section� The 
rst set of constraints ��
 
xes row sums�
precisely as in �MB�� The second set of constraints ��
 enforces symmetry� The third set
of constraints ��
 
xes the ratio between intra� and inter�wirecenter tra�c� by 
xing the
diagonal in the new matrix to be equal to that of the original matrix� Since these values
are 
xed we could� alternatively� remove the associated variables from the model and adjust
the row sums to compensate� In either case� �SMB� estimates only the o��diagonal entries�
Finally� we 
x elements to zero when both of the associated elements of the original matrix
are zero� This is a slight modi
cation of the usual matrix balancing condition that we make
to accomodate symmetric solutions� When seeking a symmetric matrix� we really have
two pieces of information associated with each new element� That is� both mij and mji

can be viewed as observations associated with the single new element xij � xji� So� to be
consistent� we 
x the element to zero only when both elements of the original matrix are
zero�

The fact that mij and mji are two pieces of information associated with a single new
value should also play a role in the objective� Rather than set fij��
 as in ��
� it seems
natural to have a more �symmetric� objective� The most obvious choice penalizes deviations
from the average of the two observations� Thus� the quadratic penalty becomes

fij�xij
 � wij

�
xij �

mij �mji

�

	�

� ��


and the entropy penalty becomes

fij�xij
 � wijxij

�
ln



xij

mij�mji

�

��
� ��


Clearly� �SMB� does not have the transportation constraints that are so attractive in
�MB�� However� the following relaxation of �SMB� does

�RSMB��
minimize

X
i�j

fij�xij


subject to�
X
j

xij � si� � i � �� � � � � n ��


X
i

xij � sj� � j � �� � � � � n ��


xii � mii� � i � �� � � � � n ���


xij � �� � i� j � �� � � � � n

xij � � only if mij or mji � ��
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This formulation replaces the symmetry constraints ��
 with aggregate constraints ��
 that
require the column sums to be the same as the row sums� It�s clear that any symmetric
matrix has equal row and column sums� but matrices whose row and column sums are equal
are not necessarily symmetric� Thus� the feasible set of solutions of �SMB� is contained in
that of �RSMB�� Given a feasible solution to the relaxed problem� the following lemma shows
that we can at least construct a feasible solution to �SMB� by averaging pairs of elements
across the diagonal�

Lemma � Given any feasible solution X � �n�n for �RSMB��

Y �
�

�
�X �XT 
�

where XT is the transpose of X� is a feasible solution to both �RSMB� and �SMB��

�Proof�� The constraints of �RSMB� form a convex set that includes both X and XT � Since
Y is a convex combination of two elements in the convex feasible set� it is also feasible in
�RSMB�� By construction� Y is symmetric	 therefore� it is also feasible in �SMB��

Thus� a solution to �RSMB� always provides a vehicle for obtaining a feasible solution
to �SMB�� However� for certain objective functions� it yields considerably more�

Theorem � Let X � �n�n be an optimal solution to �RSMB� when the objective is some
convex function F �X
 such that

F �X
 �
X
i�j

fij�xij
 �
X
i�j

fij�xji
�

Then Y � �
��X �XT 
 is an optimal solution for both �RSMB� and �SMB��

�Proof�� By the lemma� we know that the new solution is feasible in both �RSMB� and
�SMB�� If it is also optimal in �RSMB�� then the result is proved� Optimality is an immediate
consequence of convexity� The de
nition of the objective provides that F �XT 
 � F �X
�
Convexity of the objective assures that

F �Y 
 � F �
�

�
X �

�

�
XT 
 �

�

�
F �X
 �

�

�
F �XT 
 � F �X
�

Thus� the new solution is optimal in both �RSMB� and �SMB��

When wij � wji � i� j � i� � � � � n� the objective that results from de
ning fij by
either ��
 or ��
 has the required form for Theorem � to apply� What�s more� both of these
de
nitions for the fij�s yield an objective function that is strictly convex over the feasible
region� In this case� the optimal solution for �RSMB� is guaranteed to be symmetric� so it
immediately provides the solution of �SMB��

�



Theorem � When the objective of �RSMB� is de�ned by either �	� or �
� with wij � wji �

�� the optimal solution is symmetric �and therefore optimal in �SMB���

�Proof�� Note that the resulting objective function is strictly convex� We can see this by
just looking at the Hessian of the objective� it is diagonal and strictly positive over the
feasible region�

We can prove the claim by contradiction� Assume that we have some optimal solution
X that is not symmetric� As before� XT is also feasible and has the same objective value�
Let F �X
 �

P
i�j fij�xij
� and let Y �

�
� �X �XT 
� Convexity once again provides�

F �Y 
 � F �
�

�
X �

�

�
XT 
 �

�

�
F �X
 �

�

�
F �XT 
 � F �X
�

Strict convexity further provides that the inequality is strict unless X � XT � Since X is
not symmetric� this is not the case� Thus� Y is an improved solution that contradicts the
optimality of X�

The immediate implication of this result is that 
nding a symmetric solution is really
no more di�cult than solving the more typical matrix balancing problems considered in
Schneider and Zenios ����� In fact� our problem is solved as a special case� Theorem �
clearly remains true in the more general case where there are no special restrictions on the
diagonal elements� Consequently� any technique used in solving standard matrix balancing
problems can also be applied to solve symmetric matrix balancing problems�

Within the context of producing symmetric matrices� we may prefer objectives that
penalize deviations from ranges based on xij and xji� For instance� instead of trying to
minimize deviations from �

��mij � mji
� suppose that we minimize deviations from some
interval centered at this value� The most obvious choice of such intervals has mij and mji

as endpoints� The simple intuition is that the two observations mij and mji bound a range
of acceptable solutions� so any solution within the range is not penalized� The function ��

is just the special case where the target region consists of a single point� When the target
region is an interval� the objective is a sum of piecewise quadratic functions like the one in
Figure �� When our objective has this form� it is no longer necessarily true that the optimal
solution to �RSMB� is symmetric� However� the objective is convex so Theorem � assures
that we can construct an optimal symmetric solution by averaging across the diagonal�
Solving problems with this type of objective triples the size of the underlying network �ow
problem but still preserves it�s desirable structure� We mention this only as a generalization
of the basic quadratic penalty objective ��
�

��� Feasibility

The network �ow nature of the problem allows us to easily assess when the symmetric matrix
balancing problem has a feasible solution� Since �SMB� has a feasible solution whenever
�RSMB� does� determining feasibility is equivalent to determining the feasibility of the
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Figure �� Objective based on penalties outside an interval�

related transportation problem �RSMB�� Thus� it�s not di�cult to establish just by solving
a linear transportation problem�

For completeness� we will give one statement of necessary and su�cient conditions
for feasible �ows to exist� This statement relys on the following transportation network
description of �RSMB�� Let S denote the left�hand nodes that correspond to the rows of X
and let T denote the right�hand nodes that correspond to columns� In the description that
follows� we commit a slight abuse of notation by referring to nodes and their corresponding
row or column indices interchangably� Let there be a link from i � S to j � T whenever
at least one of mij and mji is nonzero� To complete the description� let there be supply bi
associated with node i � S and demand bj associated with node j � T � where

bi � si �mii�

In subsequent discussions� we refer to b as the modi�ed row sums�they are the original row
sums with corresponding diagonal values removed to re�ect the fact that these values are

xed�

We can now state a simple feasibility theorem that follows as a special case of the
circulation feasibility theorem given in Ahuja� Magnanti� and Orlin ����

Theorem � The matrix balancing problem �SMB� has a feasible solution if and only if for
every subset �S of S X

i� �S

bi �
X

j��� �S�

bj�

where �� �S
 is the set of nodes in T that are reachable from �S�

Thus� the feasibility of �RSMB� �and� hence� �SMB�
 is veri
ed by checking that the ag�
gregate modi
ed row sum of any subset of rows does not exceed the sums of the columns
they may meet� In the special case where we are estimating a dense matrix the feasibility
conditions are particularly simple� no single modi
ed row sum can exceed the sum of all
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the others� We say that an input matrix M is balanceable if the related problem �SMB� has
a feasible solution�

This type of analysis is unnecessary for a symmetric matrix balancing problem in which
none of the diagonals are 
xed� Here we can always obtain a feasible solution by letting the
diagonal equal the associated row sum and setting all other elements to zero�

� Rounding Things Out

We now consider the issue of obtaining balanced integer matrices� A requirement of our
application is that� for any balanceable input matrix� we be able to produce a related
symmetric integer matrix that satis
es the row sum conditions ��
� This may require
adjusting diagonal entries to alter the ratio between intra� and inter�wirecenter demand
because it is certainly possible that �SMB� admits no feasible integer solution� In Section �
we provided a simple example to demonstrate this� In this section� we examine the integer
feasibility of �SMB�� then we show how relaxing the condition on the ratio of intra� and
inter�wirecenter forecasts very slightly allows us to construct the desired matrices�

��� Integer Feasibility

We begin with a discussion of integer feasibility of �SMB�� The related mathematical program
may be stated by simply adding the integrality conditions to �SMB�� Alternatively� we can
obtain a more compact formulation by using equations ��
 and ��
 to substitute for 
xed
or paired variables� If we do this� the resulting mathematical program is �SMB���

minimize
X
i�j

fij�xij


subject to�
X
j�i

xij �
X
j�i

xji �
X
j ��i

mij � � i � �� � � � � n ���


xij � Z�� � i � �� � � � � n	 j � i

xij � � only if mij or mji � ��

The advantage of this formulation is that it has a natural connection with b�matching that

allows us to assess feasibility� Given a graph G � �N �A
 and a vector b � Z
jN j
� a perfect

b�matching is given by a vector x � Z
jAj
� such that

X
j��i�j� � A

xij � bi � i � N �

To establish the connection to our problem� we construct an undirected graph G � �N �A

that has a node associated with each row of the matrixM � and an arc �i� j
 �i � j
 whenever
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Figure �� A matrix and an associated b�matching problem�

at least one of mij and mji are positive� Thus� there is an arc associated with each �above�
diagonal
 element that may have a nonzero forecast� The value bi associated with node
i � N is the modi
ed row sum de
ned in the previous section� Figure � provides an
example of a matrix and its associated graph� �The nodes in Figure � are shown with their
associated b values�


Given this description� one can see that the coe�cients forming the left�hand side of
constraints ���
 of �SMB�� are precisely those of the node�arc incidence matrix associated
with G� Hence� the constraints themselves are equivalent to the constraints for perfect b�
matching in G� where bi �

P
j ��imij � As a consequence of this connection with b�matching�

we know that our demand forecasting problem has an integer solution if and only if G
contains a perfect b�matching�

We note that by omitting the integrality requirement� we obtain an alternate represen�
tation of the continuous problem as a fractional perfect b�matching� One way to interpret the
results of the previous section is that the convex separable nonlinear fractional b�matching
problem is solvable as a nonlinear network �ow problem� Solving linear network �ow prob�
lems is a well�known means to solve linear fractional b�matching problems� so it is perhaps
not surprising that the same device applies more generally� In the remainder of this paper�
we will explicitly note when a matching is allowed to be fractional	 otherwise� integrality
should be assumed�

Matching problems have been widely studied in the literature� and as a result� a great
deal is known about when certain types of matchings do and do not exist� Excellent reviews
of matching results are provided in Nemhauser and Wolsey ���� and Schrijver ����� while an
extensive treatment is available in Lovasz and Plummer �����

Whether or not a perfect b�matching exists can be determined in polynomial time
by virtue of a b�matching algorithm such as that of Marsh ����� �See also Padberg and
Rao �����
 Alternatively� a characterization theorem of Tutte ���� provides necessary and
su�cient conditions for a perfect b�matching to exist� Schrijver ���� provides an alternate
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statement as a max�min result� Those results yield the following theorem�

Theorem � An undirected G � �N �A
 has a perfect b�matching if and only if for each
subset S of N �

b�S
 � ��N�S
�

where�

� b�S
 is
P

v�S bv� and

� ��N�S
 is as follows� let I be the set of isolated nodes in the graph induced by N�S
and let t be the number of components C of the graph induced by N��S 	I
 for whichP

v�C bv is odd� then ��N�S
 � b�I
 � t�

We note that for any balanceable instance of the problem� Theorem � assures that

b�S
 � b�I


for any S 
 N � Thus� feasibility boils down to assuring that there are not too many
odd components in any induced subgraph� These conditions allow us to characterize when
perfect b�matchings� and hence balanced integer matrices� are guaranteed to exist� What is
perhaps more relevant for our purposes is the fact that there can be many problem instances�
corresponding to balanceable matrices� that do not admit integer solutions�

For instance� by letting S � �� it�s clear that G has no perfect b�matching if the sum
of the bi�s is odd� When G is a complete graph� indicating that all non�diagonal matrix
elements may be positive� this is the only condition under which no perfect b�matching
exists� given that the corresponding matrix is balanceable� Thus� we can transform this to
a feasible perfect b�matching problem by simply decreasing the largest element of b by one�
In our matrix problem� this corresponds to decreasing the largest modi
ed row sum by one
and then increasing the associated diagonal element to compensate� For sparser graphs�
there may be other conditions under which there is no perfect b�matching� so it becomes
less obvious how to modify b �in a controlled way
 to assure a perfect b�matching� The
algorithm we present in the next section provides a partial answer�

Existence of a b�matching only addresses the issue of feasibility� To use a b�matching
approach to solve our symmetric matrix balancing problem� we need to incorporate a sepa�
rable nonlinear objective function similar to ��
 or ��
� Thus� the issue of whether a method
for nonlinear b�matching would be computationally viable presents another question that
we do not address here�

Some questions�

Is convex separable b�matching polynomially solvable
 This is probably�
� the case �
both the poly� b�matching algorithm of Marsh and the poly� algs� for convex cost network
�ows are based on Edmonds Karp kinds of scaling algorithms� It�s no worse than pseudo�
polynomial�

Can we minimally alter b in such a way that we know a perfect matching exists


��



��� A heuristic approach

Rather than solve nonlinear b�matching problems� we can take advantage of the fact that
preserving the ratio between intra� and inter�wirecenter demands is really a �soft� constraint
in our application� Thus� small violations of this condition are certainly acceptable� Ideally�
our goal is to alter no diagonal element by more than one� The remainder of this section
is dedicated to showing that we can identify such solutions in a computationally e�cient
manner that requires nothing more sophisticated than network �ow solvers�

Before doing this we note that given a continuous solution it is easy to construct
symmetric integer matrices that may fail to preserve the ratio between intra� and inter�
wirecenter demands by larger amounts� Generally speaking� we would obtain such a matrix
by rounding in some symmetric manner and then altering the diagonal values to preserve
the row sums� The simplest construction is to round all elements down and then add the
di�erence in row sums to the diagonal of the rounded matrix� The result is a symmetric�
integer matrix with the required row sums� This is certainly a simple post�processing step�
but� especially in the case of small wirecenters� may change the character of the demand
forecasts by placing too much demand within its local area�

We now describe a method that alters no diagonal element by more than one� The
method begins with an integer solution to �RSMB�� that may not be symmetric� There
are several ways to obtain �good� integer solutions� �
 solve the integer network �ow
problem to 
nd the optimal solution	 �
 round the optimal continuous solution using network
�ow techniques to preserve the row and column sums �see ���
	 and �
 solve a piecewise
linearization of the nonlinear problem using the network simplex method� The optimal
�asymmetric
 integer solution may be obtained by polynomial�time algorithms for separable
nonlinear network �ow problems such as those of Hochbaum and Shantikumar ���� and
Minoux �����

These network �ow approaches �can
 yield integer matrices in which paired elements
xij and xji di�er by at most one� In this sense� the matrix is almost symmetric� and it has
all of the other desirable features� Thus� if we are willing to �slightly
 relax the symmetry
conditions instead of the 
xed�diagonal conditions� network �ow methods are all we need�

The fact that paired elements di�er by at most one is obvious when we�re just rounding
the continous solution� That the optimal integer solution necessarily posesses this property
is less clear� so we state and prove this in Theorem �

Theorem � When the objective of �RSMB� is de�ned by either �	� or �
� with wij � wji �

�� the optimal integer�valued solution has the property that paired elements xij and xji di�er
by at most one� for all i� j � �� � � � � n�

�Proof�� �� Here�s the idea� but it needs to be cleaned up� The simplest way to do this
is to piecewise linearize the objective so that each piece is one unit long� An optimal
solution to the nonlinear problem is optimal in the piecewise linear one� and vice versa� By
convexity� averaging across the diagonal will yield a solution that is equal to or better than
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the current one� If two elements di�er by more than one unit� then they lie in di�erent pieces
of the piecewise linearization� so the solution will be improved by averaging� Probably some
augmenting path kind of argument will work also���

Given any integer feasible solution of �RSMB�� we can obtain another feasible solution
that is symmetric and half�integer by averaging paired elements across the diagonal� �A
half�integer matrix is a matrix whose elements are either an integer or an integer divided
by two�
 Our algorithm operates on a symmetric half�integer matrix that corresponds to a
feasible solution of �RSMB�� Given such a matrix� each iteration of the algorithm selects a
group of elements that may be rounded together to preserve both symmetry and the row
and column sums� An iteration of the algorithm reduces the number of non�integers and
preserves the invariant properties of half�integrality� symmetry� and row and column sums�

The method is stated in Algorithm �� Given this description� it remains to show that
the algorithm produces a solution with the desired properties� We do this in two parts�
First we show that� at the end of each iteration� the new matrix still possesses the invariant
properties�namely� we show that it is symmetric� half�integer� has a diagonal within one
of the original� and has the same row sums� Second� we demonstrate that the algorithm
terminates�
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Figure �� Possible �cycles� identi
ed by Algorithm ��

Although the algorithm is stated directly in terms of the matrix� it may be helpful to
view it another way� We can construct a graph G whose nodes correspond to non�integer
matrix elements and whose edges join two nodes if their associated non�integers are in the
same row or column� Thus� a node is associated with a unique matrix element� so we may
also use the term �node� to refer to its corresponding matrix element� The algorithm works
to construct two paths� P and �P � that are �re�ections� or �transposes� of eachother in
the sense that when P visits a node� �P visits the node across the diagonal from it� The
algorithm builds these two paths until ultimately they close to form either one big cycle or
two disjoint cycles� Figure � depicts each of the two cases� An iteration ends in the column
scanning step when the two paths can be joined to form a single cycle� An iteration ends in
the row scanning step when the paths close on themselves to form two separate cycles� The
cycles visit each row and each column an even number �possibly zero
 of times� and a row
or column that is visited is visited twice consecutively� The properties of the paths and the
cycles built from them allow us to use parity arguments to demonstrate the correctness of
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Input� a symmetric half�integer matrix X � �n�n with the prescribed �integer� row and column sums�
Set vector d � �n to zero�
While there are non�integers in X do�

Initialization�
Let P and 	P be ordered lists of elements of X �
Select some non�integer xi�j to begin�
Set P 
 xi�j and 	P 
 xj�i and mark xi�j and xj�i as visited�
Set the �magic column� m to be j�
Set the current row r 
 i�

Scan row r�
If xr�m is an unmarked non�integer then�

Mark xr�m and xm�r�
Set P 
 P� xr�m and set 	P 
 	P � xm�r

Do rounding �case ���
Beginning with the �rst element of P �

round the elements alternately up and then down�
Beginning with the �rst element of 	P �

round the elements alternately up and then down�
Goto END�

Else� select some unmarked non�integer element in row r� say xr�k
Mark xr�k and xk�r �
Set P 
 P� xr�k and set 	P 
 	P� xk�r
Let c 
 k�

Scan column c�
If xm�c is an unmarked non�integer then�

Mark xm�c and xc�m�
Set P 
 P� xm�c and set 	P 
 	P � xc�m
Do rounding �case ���

If dm � ��
Beginning with the �rst element of P �

round the elements alternately down and then up�
Beginning with the �rst element of 	P �

round the elements alternately down and then up�
Set dm 
 �� and decrease xm�m by one�

If dm 
 ��
Beginning with the �rst element of P �

round the elements alternately up and then down�
Beginning with the �rst element of 	P �

round the elements alternately up and then down�
Set dm 
 
� and increase xm�m by one�

Goto END�
Else� select some unmarked non�integer element in column c� say xk�c

Mark xk�c and xc�k�
Set P 
 P� xk�c and set 	P 
 	P � xc�k
Let r 
 k�
Goto Scan row�

END

Algorithm �� Symmetric Rounding
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the algorithm� These properties arise because the matrix is half�integer� which means that
the non�integers are indistinguishable from eachother� so our algorithm merely has to keep
elements are properly �paired� when it rounds�

We now verify that Algorithm � produces a solution with the desired properties� We
begin by showing that each iteration preserves the invariant properties� We consider that
an iteration ends when it reaches the END statement� The only two ways to reach the end
is via one of the two rounding steps� Thus� to complete an iteration� we must round some
element�s
 of the matrix� In the next two propositions� we show how the particular choice
of elements to round in an iteration and the way they are rounded preserves the invariant
properties from one iteration to the next�

Proposition � If we begin an iteration with a symmetric half�integer matrix with integer
row sums and the iteration ends after performing a case � rounding� then the matrix produced
has the same row sums and diagonal as when the iteration began� and it is symmetric and
half�integer�

�Proof�� Since the matrix is half�integral at the beginning of the iteration� and we do
nothing more than round some of its elements� the new matrix is half�integral� as well�

The only elements that we round are in P and �P � P and �P are re�ections of eachother
in the sense that when P visits xij � �P visits xji� Thus� they visit the same sequence of
paired elements� but visit di�erent elements of the pair� Since the sequence of roundings is
the same in both P and �P � we are assured that pairs of elements are rounded together and
in the same direction� Thus� the new matrix remains symmetric� The diagonal is unchanged
because it is necessarily all integer� so there can be no diagonal elements in P or �P �

To see that an iteration preserves row sums� note that P visits each row and each column
an even number of times and a row or column that is visited is visited twice consecutively�
�Note that for visits to column m to be �consecutive�� we need to view P as a cycle�
 By
alternating the direction in which we round the elements of P � the number of round�ups in
any row or column must equal the number of round�downs� Since the matrix is half�integer�
the non�integer part of any non�integer is the same� so the row sum is preserved as long
as the number of round�ups is equal to the number of round�downs� Thus� rounding the
elements of P preserves row sums� The same type of argument holds for �P �

Proposition � If we begin an iteration with a symmetric half�integer matrix with integer
row sums and the iteration ends after performing a case � rounding� then the matrix produced
has the same row sums as when the iteration began� has a diagonal within one� and is
symmetric and half�integer�

�Proof�� The matrix is symmetric and half�integer for the same reasons as above� Demon�
strating the row sum condition is analogous� but slightly more complicated� than for case ��
We once again examine P and �P and note that both P and �P visit all rows and columns
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except m an even number of times� In addition� except for P �s 
rst visit to column m

and last visit to row m� any row or column visited is visited twice consecutively� Thus�
the alternating rounding of P preserves all row and column sums except m� If the 
rst
element of P is rounded up� then the sum across row �and column
 m is increased by a
half	 otherwise� it decreases by a half� Similarly� �P visits all rows and columns except m an
even number of times� and visits are paired except for the 
rst visit to row m and the last
visit to column m� When the 
rst element of �P is rounded up� the sum across row �and
column
 m increases by a half	 otherwise� it decreases by that amount� In total� rounding
the elements of P and �P either increases or decreases the sums across row and column m

by one� We compensate by altering the diagonal element xmm� Note that d is an indicator
vector whose mth element is one if xmm is already one greater than its original value� and is
zero when xmm is at its original value� Thus� if xmm has already been increased� we begin
by rounding the elements of P and �P up and preserve the row sum by restoring xmm to
its original value� Otherwise� we begin rounding the elements of P and �P down and 
x
the row sum by increasing xmm by one� Thus� the rounding does preserve row sums� It
also keeps the diagonal within one of its original value because the indicator dm prevents us
from either increasing or decreasing xmm twice consecutively� Hence� the diagonal iterates
between its original value and its original value plus one�

Theorem � If the algorithm begins with a symmetric half�integer matrix with integer row
sums� then it terminates with a symmetric integer matrix whose row sums are the same as
the original matrix and whose diagonal elements are within one�

Propositions � and � guarantee that as long as we begin an iteration with a symmetric�
half�integer matrix with integer row sums� and we reach one of the two rounding steps�
we end the iteration with a symmetric� half�integer matrix with the same row sums and
diagonals within one of the initial matrix� Moreover� each iteration reduces the number
of non�integers whenever it reaches a rounding step� Thus� proving the claim reduces to
showing that each iteration reaches one of the two rounding steps�

Assume that at some point we cannot reach one of the rounding steps for the 
rst time�
This means that we have reached a point where we cannot 
nd another unvisited non�integer
in our current row or column� Let�s examine both cases� Suppose that we are scanning row
r and are unable to 
nd another unmarked non�integer in row r� So far� P has visited row
r an odd number of times and �P has visited row m an odd number of times� They visit
all other rows an even number of times� Thus� either r has an odd number of non�integers�
which contradicts the fact that the initial matrix is symmetric and half�integer with integer
row sums� or r � m� However r �� m� because upon reaching row m the iteration would
have terminated in rounding case �� Thus� this situation cannot occur�

Now suppose we are scanning column c and are unable to 
nd another unmarked non�
integer� When scanning a column� it is the case that �P has visited all columns an even
number of times� while P has visited columns c and m an odd number of times and all
others an even number of times� It cannot be the case that c � m because otherwise the
iteration would have terminated in rounding case �� Thus� the fact that we cannot 
nd
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another unmarked non�integer in column c contradicts the assumption that we began the
iteration with a symmetric half�integer matrix with integer row sums�

Therefore� each iteration is able to reach one of the two rounding steps� Since each
iteration is guaranteed to reduce the number of non�integers and produce a matrix with the
desired properties� the entire algorithm will ultimately produce an integer matrix with the
desired properties�

��� Sample Results

Include some sample computational results here� Describe what we did and why� piece�wise
linearization� followed by heuristic�

In results note� �
 problem sizes and largest bi �they�re pretty big� so a pseudo�
polynomial algorithm probably won�t be appropriate
	 �
 time to solve net�ow time to
do rounding �
 in how many cases is the forecast outside the range given by xij and xji �

what is the worst violation of this range constraint �
 how many diagonals get changed�

��� Matching revisited

Algorithm � guarantees that� if a matrix is balanceable� we can 
nd a symmetric integer
matrix that changes no diagonal element by more than one� For the related b�matching
problem� this means that there exists some �b� such that

�bi � fbi� bi � �g � i � �� � � � � n�

for which G has a perfect �b�matching� Algorithm � gives us one such �b�

Ideally� we�d like to select a �b that yields a matching that is� in some sense� optimal� The
ability to change diagonal matrix elements can be incorporated in the associated b�matching
model by placing loops at nodes corresponding to rows in which a diagonal element may
vary� The variables associated with the loops have upper bounds that e�ectively limit the
change in any associated diagonal element� In the problem that we�ve presented� all of these
upper bounds are equal to one� but more general models could allow diagonal elements to
be increased or decreased within individually speci
ed bounds� Changes in the diagonal
elements may be penalized in the objective� just as they are for other matrix elements�

It is straightforward to allow diagonal elements to vary by larger amounts in the context
of the heuristic approach� as well� If none of the diagonal elements are 
xed at a prescribed
value� then the heuristic also delivers a feasible solution� To do this� we include variables
corresponding to diagonal elements in the network �ow model� If the ith diagonal element
is allowed to vary between li and ui� the associated variable in the network �ow model will
have bounds li and ui� Given feasible integer solution for the network �ow problem� we
average across the diagonal and apply a slight modi
cation of Algorithm �� The indicator
di in the algorithm will now be ��� �� or �� depending upon whether the diagonal is at its
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lower bound� its upper bound� or between bounds� Now� if the diagonal must be changed
to preserve row and column sums in a rounding step� we round in a direction that would
ensure that the diagonal remains within its bounds and update di to re�ect the new status
of the diagonal element�

Loops may also be used to model �exibility in the row sum conditions� If the row sums
are allowed to fall within some range� the constraints ���
 are replaced by

bLi �
X
j�i

xij �
X
j�i

xji � bUi � � i � �� � � � � n�

where bLi and bUi denote the allowable range� Censor and Zenios consider allowing range
constraints in the context of standard matrix balancing models in ���� Range constraints
in symmetric matrix balancing can be interpreted in the context of the b�matching model
as follows� the b�value at node i becomes bUi and there is a loop at node i whose corre�
sponding variable has a lower bound of � and an upper bound of bUi � bLi � A feasible perfect
bUi �matching corresponds to a symmetric integer matrix whose row and column sums fall
into the prescribed range� Once again� a modi
cation to the network �ow model� yields
an optimal continuous solution to the ranged problem� Network �ow solutions are easily
modi
ed to yield feasible symmetric integer solutions when every upper bound is larger
than its associated lower bound�

Finally� the matching model can be adapted to 
nd solutions that minimize the number
of changes to the diagonal� We begin with a graph formed in the usual way� then we add
a new node v and a new arc between v and every other node� These new arcs have upper
bounds of �� We also add a loop at node v� If we let bv be the number of rows in our
associated matrix� a maximum weight perfect �capacitated
 b�matching� where the weight
on the loop at node v is � and all other weights are zero� corresponds to a solution that
changes the diagonal as little as possible� Once we know how many times the diagonal
must change� we can solve a separable nonlinear perfect b�matching in this graph to 
nd a
symmetric integer matrix that is close to our original matrix and changes as few diagonals
as possible� To do this� we replace the objective with one that penalizes deviations from
�
��xij � xji
� and include a lower bound on the variable associated with the loop at node
v� This lower bound is equal to the number of rows in the corresponding matrix minus
the number of required diagonal changes� For the small example provided in Section �� we
know that one diagonal element must be changed in order to 
nd a balanced� symmetric�
integer matrix� Figure � shows the associated b�matching model� if our goal is to 
nd a
solution that changes only one diagonal element�

� Conclusions

It�s clear that a wide range of symmetric matrix balancing problems can be modeled in
the context of b�matching� The problem of forecasting symmetric services that we have
presented is one ready application�
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Figure �� b�matching model that changes only one diagonal element�

We�ve used this application to motivate the discussion of several simple variations on
classical matrix balancing models� The two twists that we�ve considered are symmetry and
integrality� In Table �� we summarize the e�ect of adding these constraints individually
and in tandem� The conditions that we imposed on allowable changes to diagonal elements
don�t change the nature of the formulation� so they are not included in Table �� The
constraints on diagonal elements do a�ect feasibility� However� we�ve shown that� unless
elements are 
xed� any balanceable instance of the problem admits an integer symmetric
feasible solution�

Additional Constraints Solution technique

integrality integer convex separable network �ow
symmetry convex separable network �ow
integrality and symmetry convex separable perfect b�matching

Table �� Added constraints and the e�ect on solution technique�

It�s clear that fast methods for solving convex separable b�matching problems have a
ready application in forecasting demands for symmetric services� The viability of these
methods for realistic instances needs to be explored� In the meantime� the heuristic method
that we have described for obtaining an �almost�perfect� b�matching satis
es our immediate
needs� These heuristics are employed in the forecasting tool described in �����
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