Variations on Matrix Balancing for Telecommunication
Demand Forecasting

Abstract

Matrix balancing is a term that describes the process of altering the elements of a
matrix to make it conform to known regularity conditions while still remaining ‘close’
to the original matrix. Often the regularity conditions relate only to the row and col-
umn sums, which yields problems having a desirable ‘network’ structure. We describe
an application in telecommunication demand forecasting that additionally requires the
matrix to be symmetric. Although this requirement destroys the network constraint
structure, we show that for certain objectives row and column sum conditions are suffi-
cient to ensure symmetry. In addition, we describe a rounding procedure for generating
heuristic integer solutions.

The problem of adjusting the elements of a matrix so that they satisfy certain con-
sistency requirements but still remain ‘close’ to the original matrix is generically referred
to as matriz balancing. Matrix balancing problems arise in a wide range of practical con-
texts that include accounting, transportation, and demographics. These and several other
applications are reviewed in an excellent overview by Schneider and Zenios [20].

In a typical matrix balancing problem, we have a matrix that estimates certain quanti-
ties of interest, but these estimates do not satisfy consistency requirements that the actual
values are known to satisfy. An example might be estimating the elements of a transition
probability matrix which we know to be doubly stochastic. Consistency with the doubly
stochastic property requires that the rows and columns sum to one. The doubly stochas-
tic matrix is an example of one of two types of matrix balancing problems discussed by
Schneider and Zenios [20]. They are

e adjusting the elements of a matrix so that the row and column sums equal certain
prescribed values;

e adjusting the elements of a square matrix so that its row and column sums are equal
to each other, but not necessarily to any prescribed values.

Both the application we consider, and the doubly stochastic condition mentioned above
yield matrix balancing problems of the first type.

The conditions imposed on the row and column sums are called balance conditions, and
a matrix that satisfies the balance conditions is said to be balanced. In the applications
considered by Schneider and Zenios [20], the balance conditions relate only to row and
column sums. More generally, the balance conditions can be restrictions on the sums of
various combinations of matrix elements. (See, for example, Censor and Zenios [6].) The
fair representation problem considered by Balinski and Demange [5] is one example. In the
most general case, the balance conditions can be any set of linear restrictions on the matrix
entries.

For a particular set of balance conditions there may be a large number of balanced
matrices, but in matrix balancing, we seek a balanced matrix that is close to the original
matrix. Schneider and Zenios [20] review several methods for obtaining such matrices.
These methods typically fall into one of two categories: 1) scaling methods [2, 5, 6, 20]; and
2) mathematical programming methods [25, 20]. Of the two approaches, the mathematical
programming-based methods are more flexible in the sense that they are easily adapted
to accomodate changes in the underlying model, such as including bounds or objective
weights [20]. The mathematical programs that result from many matrix balancing problems
are nonlinear network flow problems that are solved quite efficiently using general purpose
nonlinear network solvers such as that of Mulvey and Zenios [17]. However, the applicability
of network flow models depends upon the type of balance conditions that are imposed.

In this paper, we consider a problem that arises in telecommunication demand fore-
casting and use it to motivate discussion of variations on matrix balancing that incorporate

symmetry and integrality conditions. The symmetry requirement essentially changes the
constraints of our model from those of a network flow problem to those of a matching prob-
lem. However, we show that for certain intuitively appealing objective functions, standard
matrix balancing formulations do, in fact, yield optimal continuous solutions. Ultimately,
our goal is to produce symmetric integer matrices. This additional requirement transforms
our problem to one of finding a perfect b-matching that optimizes a convex separable non-
linear objective. While it may be the case that this problem is infeasible, we can always
identify an “almost-perfect” b-matching that suits the needs of this particular application.

1 The Telecommunications Demand Forecasting Problem

Our application arises in forecasting demands between wirecenters in a telecommunication
network. These forecasts are used in a variety of network planning activities. Placing and
sizing links and switches would be among the most important.

The particular demands that we consider are for symmetric broadband services or nar-
rowband services, like ordinary voice telephone. These services involve symmetric two-way
communication, so meaningful forecasts for such products should, likewise, be symmetric. A
symmetric forecast requires that the forecasted demand from wirecenter A to wirecenter B
be the same as that from B to A.

It is often the case that there are no historical measurements of inter-wirecenter traf-
fic, but there are measurements or forecasts of the aggregate amount of demand at each
wirecenter. Given the aggregate demands at the wirecenters (either measured or forecast),
econometric models are used to disaggregate these values to obtain forecasts for the inter-
wirecenter demands. While these econometric forecasts contain valuable information, they
are not typically symmetric, so they cannot be used directly for planning.

This is the point at which our application begins. We are given a matrix M that contains
inter-wirecenter forecasts derived from econometric models. An element m;; represents the
forecast for the demand from wirecenter i to wirecenter j. The elements along the diagonal
are forecasts of within-wirecenter demand. The forecasts are all integer and the sum of the
forecasts along any row is equal to the forecast of the aggregate demand at the associated
wirecenter. Our goal is to find another matrix that is ‘close’ to M, that preserves desirable
properties that M already possesses, but is also symmetric. The particular properties of
M that we wish to preserve are: integrality; its row sums; and its ratio between intra-
and inter-wirecenter traffic. The reason for imposing the integrality requirement is simply
that these demands would necessarily be integer amounts. If our model does not produce
integer forecasts, they would likely be obtained by some ad hoc means. We preserve the
ratio between intra- and inter-wirecenter traffic only because there may be some inherent
difference in the forecasts—for instance, we may have better data on intra-wirecenter traffic.
Preserving this ratio is not really a hard constraint but is more a guideline to prevent altering
the character of the solution too much. As a result, this particular condition can be—and
ultimately is—relaxed in a controlled way to obtain an integer solution.

Generate forecasts Aggregate Disaggregate I nter-wirecenter M odify inter—w_ireomter Final
of aggregate demand aggregate forecasts to satisfy — Fin
at each wirecenter Forecasts forecasts Forecasts regularity conditions Forecasts

Figure 1: Overview of the demand forecasting process.

An overview of the demand forecasting process is provided in Figure 1. The first two
steps produce the aggregate and disaggregate forecasts, respectively. The metholodology
underlying these processes is described in detail in [23, 24]. This paper addresses only the
final step in which the demands are modified to conform to known regularity conditions.
This final step seeks a matrix that is close to the matrix, M, computed in the second step
and has the following properties:

1. it has all integer entries;

2. its row sums are equal to those of M;
3. it is symmetric; and

4. its diagonal is the same as that of M.

Note that given the second condition, fixing the diagonal is equivalent to fixing the ratio
between intra- and inter-wirecenter demand at each wirecenter. The last three conditions
could be considered our “balance conditions”.

One final point relating to our application is that the techniques we develop will ul-
timately be imbeded in decision support tools used by network planners. This brings up
several issues that may not be of concern in more theoretical treatments of this problem.
First, the procedures are likely to be used in tools that are somewhat interactive, so they
should be fast on moderate-sized problems of perhaps several hundred nodes. Second, the
software employed should be as general as possible (without sacrificing efficieny) so that
it is adaptable to variations in the underlying model. Third, the algorithm should always
produce a solution to a reasonable instance of the problem. In this case, we consider a
problem instance to be “reasonable” whenever a balanced continuous solution exists. Our
application requires that we provide an integer solution for any reasonable instance.

Of course, it’s simple to demonstrate that even when a balanced matrix exists, a bal-
anced integer matrix may not. A simple 3 x 3 example suffices. Suppose our matrix of
forecasts is

2 1
1 0 1/{.
110 |
We seek a new matrix })
0 a b
a 0 c |,
b ¢ 0

whose entries a, b, and ¢ are the unique solution to the system

a+ b = 3, (1)
a +c = 2
b +c = 2

[\JeS)

The solution is a = %, b=13%,and c = % Hence, no balanced integer matrix exists.

To provide an integer solution we need to relax some of the constraints. For the current
application, we will be allowed alter any diagonal element by one, in order to assure that
an integer solution (albeit to a relaxed problem) can be found.

By allowing this flexibility, a solution to the above problem is immediately available:
111
1 01
1 10

We examine these feasibility issues in considerable detail in the next two sections. Our
reason for mentioning them here is simply to point out that relaxing the fixed-diagonal
requirement is critical to producing integer solutions.

2 Striking a Balance

For the time being, we will omit the integrality requirements and examine the continuous
version of the problem. Here, the main difference between our problem and those considered
by Schneider and Zenios is the symmetry requirement. Unfortunately, enforcing symmetry
in the constraints of the optimization model transforms it from a nonlinear network model
to a more general linearly constrained nonlinear program. Solving these more general prob-
lems typically requires more time and more sophisticated software. Thus, it is certainly
advantageous to employ network models and solution techniques wherever possible. One
of our goals in this section is to show that it’s possible to produce continuous symmetric
matrices with the desired properties using network models.

2.1 A brief review of matrix balancing

We begin our discussion of optimization approaches by presenting a standard matrix bal-
ancing formulation for producing matrices with prescribed row and column sums. This
formulation appears in [20]. Suppose that we are given an n X n nonnegative matrix M
and positive vectors s and d, both in R”, that provide target row and column sums. The
associated matrix balancing problem can be written

[MB]:
minimize Z fzj(xz])

Z.7-].

ROWS COLUMNS

I
01236
406 7| 17
6107 18
112014

S 617184

Figure 2: A matrix and it’s associated transportation network.

subject to: inj = s VYi=1, ..., n
J
Zwij = d; Vyj=1,...,n
i
Lij > 0, Vi,j: 1,...,n

xziyj > 0 onlyif my; > 0.

The constraints in this model can be viewed as the flow-balance equations in an as-
sociated transportation problem. Figure 2 provides an example of a small matrix and its
representation as a transportation network. There is one left-hand node associated with
each row of M and one right-hand node associated with each column of M. There is a
link from left-hand node ¢ to right-hand node 5 whenever the corresponding matrix element
m;j of M is nonzero. Left-hand node ¢ has supply s;, while right-hand node ¢ has demand
d;. To complete the network flow description of the problem, we associate a cost fi;(z;;)
of sending z;; units of flow on the link from ¢ to j and try to minimize the total cost of
satisfying demands. The optimal flows z;; provide the new balanced matrix.

The objective function employed in matrix balancing is typically separable, nonlinear,
and convex. The role of the objective is clearly to penalize deviations from the original
matrix. Nonlinear objectives are attractive because they promote balance among the de-
viations by penalizing large deviations disproportionately more. Schneider and Zenios [20]
note that quadratic and entropy penalty functions are the ones that are typically used in
practice.

Quadratic objective functions that minimize the (weighted) sum of squared deviations

from the target matrix have been more widely studied. For problem [MB], we obtain the
quadratic penalty objective by letting

fii(wig) = wij(zij — mij)?, (2)

where the w;;’s are nonnegative weights. The resulting problem has a separable quadratic
objective and transportation constraints. Bachem and Korte [3, 4], Cottle et al. [8], and
Klincewicz [11] all designed solution algorithms that exploit the inherent structure of such
problems. More recently, Cosares and Hochbaum [7] have shown that both the continu-
ous and integer versions of the resulting quadratic transportation problem are solvable in
strongly polynomial time for a fixed problem size. (Note: Check to make sure that this
is still true when bipartite graph isn’t complete.) Arbitrary instances of the real-valued
problem are solvable in polynomial time by virtue of a result of Minoux [14]. Polynomial
solvability is also guaranteed by more general results on the polynomial solvability of convex
quadratic programs, such as those of Monteiro and Adler [16]. Minoux [15] and Hochbaum
and Shantikumar [10] provide polynomial-time algorithms for the integer-valued problem.

Alternatively, the entropy objective defines

— Tijy _
fij(@ij) = wijai; [ln(mij) 1] .
Many of the common scaling algorithms for matrix balancing implicitly optimize an entropy-
like function. (See, for example, [2, 20, 5].) Zenios, Drud and Mulvey [25] employ entropy
functions in the context of network models for matrix balancing. The integer version of the
problem is polynomially solvable because convex cost network flow problems are polynomi-
ally solvable [15, 10]. (See also [1].)

2.2 Symmetric balancing

With the description of the above problem in mind, we return to the continuous version of
the telecommunications balancing problem. Note that the preceding model explicitly fixes
some of the matrix elements to zero by omitting the associated link from the model. This
presumes that a value of zero in the original matrix reflects an “impossible transaction”.
Such assumptions are not necessarily called for in our telecommunication model, but one can
certainly imagine instances where analogous assumptions are meaningful. Consequently, we
formulate subsequent models with similar restrictions, but note that removing them does
not impact our analysis in any way.

We now present the following symmetric matriz balancing formulation

[SMB]:
minimize Z fw(x”)
Z.7-].
subject to: inj = s, Vi=1, ..., n (3)
J

T = xj, Vi, j=1,...,n (4)
Tig = Mg, Vi= 1, ey (5)
Lij > 0, Vi,j: 1,...,n

Tij > 0 only if mij OT Mj; > 0,

where s; = 3_; m;;. Note that this model includes each matrix element in the formulation,
like the first model in the previous section. The first set of constraints (3) fixes row sums,
precisely as in [MB]. The second set of constraints (4) enforces symmetry. The third set
of constraints (5) fixes the ratio between intra- and inter-wirecenter traffic, by fixing the
diagonal in the new matrix to be equal to that of the original matrix. Since these values
are fixed we could, alternatively, remove the associated variables from the model and adjust
the row sums to compensate. In either case, [SMB] estimates only the off-diagonal entries.
Finally, we fix elements to zero when both of the associated elements of the original matrix
are zero. This is a slight modification of the usual matrix balancing condition that we make
to accomodate symmetric solutions. When seeking a symmetric matrix, we really have
two pieces of information associated with each new element. That is, both m;; and mj;
can be viewed as observations associated with the single new element z;; = x;;. So, to be
consistent, we fix the element to zero only when both elements of the original matrix are
Zero.

The fact that m;; and mj; are two pieces of information associated with a single new
value should also play a role in the objective. Rather than set f;;(-) as in (2), it seems
natural to have a more ‘symmetric’ objective. The most obvious choice penalizes deviations
from the average of the two observations. Thus, the quadratic penalty becomes
myj + My > 2

bl

(6)

fij(@ij) = wij (wij - 5

and the entropy penalty becomes
fii(zij) = wijzi; [In B (7)
1] 1])] mij +m]-i *
2

Clearly, [SMB] does not have the transportation constraints that are so attractive in
[MB]. However, the following relaxation of [SMB] does

[RSMB]:
minimize Z fw(x”)
1,7
subject to: inj = s, VYi=1,n (8)
J
wa = Sy, V.] = 17 y T (9)
2
Ty = mii,Vi: 1,...,n (10)
zi; = 0, Vi, 7=1, ..., n

x;;j > 0 onlyif m; or mj; > 0.

This formulation replaces the symmetry constraints (4) with aggregate constraints (9) that
require the column sums to be the same as the row sums. It’s clear that any symmetric
matrix has equal row and column sums, but matrices whose row and column sums are equal
are not necessarily symmetric. Thus, the feasible set of solutions of [SMB] is contained in
that of [RSMB]. Given a feasible solution to the relaxed problem, the following lemma shows
that we can at least construct a feasible solution to [SMB] by averaging pairs of elements
across the diagonal.

Lemma 1 Given any feasible solution X € R"*"™ for [RSMB],
1 T

where X1 is the transpose of X, is a feasible solution to both [RSMB] and [SMB].

(Proof.) The constraints of [RSMB] form a convex set that includes both X and X”. Since
Y is a convex combination of two elements in the convex feasible set, it is also feasible in
[RSMB]. By construction, Y is symmetric; therefore, it is also feasible in [SMB]. |

Thus, a solution to [RSMB] always provides a vehicle for obtaining a feasible solution
to [SMB]. However, for certain objective functions, it yields considerably more.

Theorem 1 Let X € R™ ™ be an optimal solution to [RSMB] when the objective is some
convex function F(X) such that

F(X) =Y fij(zij) +) fijlap)-

1<j 1<j

ThenY = (X + XT) is an optimal solution for both [RSMB] and [SMBJ.

(Proof.) By the lemma, we know that the new solution is feasible in both [RSMB] and
[SMB]. If it is also optimal in [RSMB], then the result is proved. Optimality is an immediate
consequence of convexity. The definition of the objective provides that F(X7T) = F(X).
Convexity of the objective assures that

1 1

1
=X
2+

F(Y) = F(XY <ZFP(X)+ 5F(XT) = F(X).

1 1
2 -2
Thus, the new solution is optimal in both [RSMB] and [SMB]. i

When w;; = wy; Vi, j = 4, ..., n, the objective that results from defining f;; by
either (6) or (7) has the required form for Theorem 1 to apply. What’s more, both of these
definitions for the f;;’s yield an objective function that is strictly convex over the feasible
region. In this case, the optimal solution for [RSMB] is guaranteed to be symmetric, so it
immediately provides the solution of [SMB].

Theorem 2 When the objective of [RSMB] is defined by either (6) or (7) with w;j = wj; >
0, the optimal solution is symmetric (and therefore optimal in [SMBJ).

(Proof.) Note that the resulting objective function is strictly convex. We can see this by
just looking at the Hessian of the objective: it is diagonal and strictly positive over the
feasible region.

We can prove the claim by contradiction. Assume that we have some optimal solution
X that is not symmetric. As before, X7 is also feasible and has the same objective value.
Let F(X) =3, ; fij(zij), and let Y = $(X 4+ XT). Convexity once again provides:

1 1
F(Y)=F(3X + 5XT) <

F(X)+ %F(XT) = F(X).

1
2
Strict convexity further provides that the inequality is strict unless X = X7 Since X is
not symmetric, this is not the case. Thus, Y is an improved solution that contradicts the

optimality of X. |

The immediate implication of this result is that finding a symmetric solution is really
no more difficult than solving the more typical matrix balancing problems considered in
Schneider and Zenios [20]. In fact, our problem is solved as a special case. Theorem 2
clearly remains true in the more general case where there are no special restrictions on the
diagonal elements. Consequently, any technique used in solving standard matrix balancing
problems can also be applied to solve symmetric matrix balancing problems.

Within the context of producing symmetric matrices, we may prefer objectives that
penalize deviations from ranges based on z;; and zj;. For instance, instead of trying to
minimize deviations from %(mw + mj;), suppose that we minimize deviations from some
interval centered at this value. The most obvious choice of such intervals has m;; and m;
as endpoints. The simple intuition is that the two observations m;; and mj; bound a range
of acceptable solutions, so any solution within the range is not penalized. The function (6)
is just the special case where the target region consists of a single point. When the target
region is an interval, the objective is a sum of piecewise quadratic functions like the one in
Figure 3. When our objective has this form, it is no longer necessarily true that the optimal
solution to [RSMB] is symmetric. However, the objective is convex so Theorem 1 assures
that we can construct an optimal symmetric solution by averaging across the diagonal.
Solving problems with this type of objective triples the size of the underlying network flow
problem but still preserves it’s desirable structure. We mention this only as a generalization
of the basic quadratic penalty objective (6).

2.3 Feasibility

The network flow nature of the problem allows us to easily assess when the symmetric matrix
balancing problem has a feasible solution. Since [SMB] has a feasible solution whenever
[RSMB] does, determining feasibility is equivalent to determining the feasibility of the

m. m._
ji ij

Target Range
Figure 3: Objective based on penalties outside an interval.

related transportation problem [RSMB]. Thus, it’s not difficult to establish just by solving
a linear transportation problem.

For completeness, we will give one statement of necessary and sufficient conditions
for feasible flows to exist. This statement relys on the following transportation network
description of [RSMBJ. Let S denote the left-hand nodes that correspond to the rows of X
and let T denote the right-hand nodes that correspond to columns. In the description that
follows, we commit a slight abuse of notation by referring to nodes and their corresponding
row or column indices interchangably. Let there be a link from ¢ € S to 7 € 7 whenever
at least one of m;; and mj; is nonzero. To complete the description, let there be supply b;
associated with node ¢ € & and demand b; associated with node j € 7, where

bi = S; — M.

In subsequent discussions, we refer to b as the modified row sums—they are the original row
sums with corresponding diagonal values removed to reflect the fact that these values are
fixed.

We can now state a simple feasibility theorem that follows as a special case of the
circulation feasibility theorem given in Ahuja, Magnanti, and Orlin [1].

Theorem 3 The matriz balancing problem [SMB] has a feasible solution if and only if for

every subset S of S
€S jeds(S)

where §(S) is the set of nodes in T that are reachable from S.

Thus, the feasibility of [RSMB] (and, hence, [SMB]) is verified by checking that the ag-
gregate modified row sum of any subset of rows does not exceed the sums of the columns
they may meet. In the special case where we are estimating a dense matrix the feasibility
conditions are particularly simple: no single modified row sum can exceed the sum of all

10

the others. We say that an input matrix M is balanceable if the related problem [SMB] has
a feasible solution.

This type of analysis is unnecessary for a symmetric matrix balancing problem in which
none of the diagonals are fixed. Here we can always obtain a feasible solution by letting the
diagonal equal the associated row sum and setting all other elements to zero.

3 Rounding Things Out

We now consider the issue of obtaining balanced integer matrices. A requirement of our
application is that, for any balanceable input matrix, we be able to produce a related
symmetric integer matrix that satisfies the row sum conditions (3). This may require
adjusting diagonal entries to alter the ratio between intra- and inter-wirecenter demand
because it is certainly possible that [SMB] admits no feasible integer solution. In Section 1
we provided a simple example to demonstrate this. In this section, we examine the integer
feasibility of [SMB], then we show how relaxing the condition on the ratio of intra- and
inter-wirecenter forecasts very slightly allows us to construct the desired matrices.

3.1 Integer Feasibility

We begin with a discussion of integer feasibility of [SMB]. The related mathematical program
may be stated by simply adding the integrality conditions to [SMB]. Alternatively, we can
obtain a more compact formulation by using equations (4) and (5) to substitute for fixed
or paired variables. If we do this, the resulting mathematical program is [SMB2]:

minimize Z fij(xif)

Z.7-].
subject to: Zwij—l—Zacji = Zmij, Vi=1, ..., n (11)
j>t j>t VE

Ty € Zy, Vi=1,...,n; 5>

xiyj > 0 onlyif my or mj; > 0,

The advantage of this formulation is that it has a natural connection with b-matching that

allows us to assess feasibility. Given a graph G = (N, A) and a vector b € Zﬁw a perfect

b-matching is given by a vector x € Z_':t' such that

Z J}ij:bi Vi e N.

J:(ig) € A

To establish the connection to our problem, we construct an undirected graph G = (N, A)
that has a node associated with each row of the matrix M, and an arc (7, j) (i < j) whenever

11

307 8 2|2
0 2 35 5|15
1900 4[15
360 1 8|18
L4 7 35 221

15

Figure 4: A matrix and an associated b-matching problem.

at least one of m;; and mj; are positive. Thus, there is an arc associated with each (above-
diagonal) element that may have a nonzero forecast. The value b; associated with node
i € N is the modified row sum defined in the previous section. Figure 4 provides an
example of a matrix and its associated graph. (The nodes in Figure 4 are shown with their
associated b values.)

Given this description, one can see that the coefficients forming the left-hand side of
constraints (11) of [SMB2] are precisely those of the node-arc incidence matrix associated
with G. Hence, the constraints themselves are equivalent to the constraints for perfect b-
matching in G, where b; = }~;,; m;j. As a consequence of this connection with b-matching,
we know that our demand forecasting problem has an integer solution if and only if G
contains a perfect b-matching.

We note that by omitting the integrality requirement, we obtain an alternate represen-
tation of the continuous problem as a fractional perfect b-matching. One way to interpret the
results of the previous section is that the convex separable nonlinear fractional b-matching
problem is solvable as a nonlinear network flow problem. Solving linear network flow prob-
lems is a well-known means to solve linear fractional b-matching problems, so it is perhaps
not surprising that the same device applies more generally. In the remainder of this paper,
we will explicitly note when a matching is allowed to be fractional; otherwise, integrality
should be assumed.

Matching problems have been widely studied in the literature, and as a result, a great
deal is known about when certain types of matchings do and do not exist. Excellent reviews
of matching results are provided in Nemhauser and Wolsey [18] and Schrijver [21], while an
extensive treatment is available in Lovasz and Plummer [12].

Whether or not a perfect b-matching exists can be determined in polynomial time
by virtue of a b-matching algorithm such as that of Marsh [13]. (See also Padberg and
Rao [19].) Alternatively, a characterization theorem of Tutte [22] provides necessary and
sufficient conditions for a perfect b-matching to exist. Schrijver [21] provides an alternate

12

statement as a max-min result. Those results yield the following theorem.

Theorem 4 An undirected G = (N, A) has a perfect b-matching if and only if for each
subset S of N,
b(S) = BN\S),

where:

o b(S) is Y ,csby; and

e B(N\S) is as follows: let T be the set of isolated nodes in the graph induced by N\S
and let t be the number of components C of the graph induced by N\(SUZ) for which
>vec by ts odd; then B(N\S) = b(Z) +t.

We note that for any balanceable instance of the problem, Theorem 3 assures that
b(S) = b(Z)

for any & € N. Thus, feasibility boils down to assuring that there are not too many
odd components in any induced subgraph. These conditions allow us to characterize when
perfect b-matchings, and hence balanced integer matrices, are guaranteed to exist. What is
perhaps more relevant for our purposes is the fact that there can be many problem instances,
corresponding to balanceable matrices, that do not admit integer solutions.

For instance, by letting S = (), it’s clear that G has no perfect b-matching if the sum
of the b;’s is odd. When G is a complete graph, indicating that all non-diagonal matrix
elements may be positive, this is the only condition under which no perfect b-matching
exists, given that the corresponding matrix is balanceable. Thus, we can transform this to
a feasible perfect b-matching problem by simply decreasing the largest element of b by one.
In our matrix problem, this corresponds to decreasing the largest modified row sum by one
and then increasing the associated diagonal element to compensate. For sparser graphs,
there may be other conditions under which there is no perfect b-matching, so it becomes
less obvious how to modify b (in a controlled way) to assure a perfect b-matching. The
algorithm we present in the next section provides a partial answer.

Existence of a b-matching only addresses the issue of feasibility. To use a b-matching
approach to solve our symmetric matrix balancing problem, we need to incorporate a sepa-
rable nonlinear objective function similar to (6) or (7). Thus, the issue of whether a method
for nonlinear b-matching would be computationally viable presents another question that
we do not address here.

Some questions:

Is convex separable b-matching polynomially solvable? This is probably(?) the case —
both the poly. b-matching algorithm of Marsh and the poly. algs. for convex cost network
flows are based on Edmonds Karp kinds of scaling algorithms. It’s no worse than pseudo-
polynomaal.

Can we minimally alter b in such a way that we know a perfect matching exists?

13

3.2 A heuristic approach

Rather than solve nonlinear b-matching problems, we can take advantage of the fact that
preserving the ratio between intra- and inter-wirecenter demands is really a ‘soft’ constraint
in our application. Thus, small violations of this condition are certainly acceptable. Ideally,
our goal is to alter no diagonal element by more than one. The remainder of this section
is dedicated to showing that we can identify such solutions in a computationally efficient
manner that requires nothing more sophisticated than network flow solvers.

Before doing this we note that given a continuous solution it is easy to construct
symmetric integer matrices that may fail to preserve the ratio between intra- and inter-
wirecenter demands by larger amounts. Generally speaking, we would obtain such a matrix
by rounding in some symmetric manner and then altering the diagonal values to preserve
the row sums. The simplest construction is to round all elements down and then add the
difference in row sums to the diagonal of the rounded matrix. The result is a symmetric,
integer matrix with the required row sums. This is certainly a simple post-processing step,
but, especially in the case of small wirecenters, may change the character of the demand
forecasts by placing too much demand within its local area.

We now describe a method that alters no diagonal element by more than one. The
method begins with an integer solution to [RSMB], that may not be symmetric. There
are several ways to obtain “good” integer solutions: 1) solve the integer network flow
problem to find the optimal solution; 2) round the optimal continuous solution using network
flow techniques to preserve the row and column sums (see [1]); and 3) solve a piecewise
linearization of the nonlinear problem using the network simplex method. The optimal
(asymmetric) integer solution may be obtained by polynomial-time algorithms for separable
nonlinear network flow problems such as those of Hochbaum and Shantikumar [10] and
Minoux [15].

These network flow approaches (can) yield integer matrices in which paired elements
x;j and z;; differ by at most one. In this sense, the matrix is almost symmetric, and it has
all of the other desirable features. Thus, if we are willing to (slightly) relax the symmetry
conditions instead of the fixed-diagonal conditions, network flow methods are all we need.

The fact that paired elements differ by at most one is obvious when we’re just rounding
the continous solution. That the optimal integer solution necessarily posesses this property
is less clear, so we state and prove this in Theorem 5

Theorem 5 When the objective of [RSMB] is defined by either (6) or (7) with w;; = wj; >
0, the optimal integer-valued solution has the property that paired elements x;; and xj; differ
by at most one, for alli, j = 1, ..., n.

(Proof.) [| Here’s the idea, but it needs to be cleaned up. The simplest way to do this
is to piecewise linearize the objective so that each piece is one unit long. An optimal
solution to the nonlinear problem is optimal in the piecewise linear one, and vice versa. By
convexity, averaging across the diagonal will yield a solution that is equal to or better than

14

the current one. If two elements differ by more than one unit, then they lie in different pieces
of the piecewise linearization, so the solution will be improved by averaging. Probably some
augmenting path kind of argument will work also.]]

Given any integer feasible solution of [RSMB], we can obtain another feasible solution
that is symmetric and half-integer by averaging paired elements across the diagonal. (A
half-integer matrix is a matrix whose elements are either an integer or an integer divided
by two.) Our algorithm operates on a symmetric half-integer matrix that corresponds to a
feasible solution of [RSMBJ. Given such a matrix, each iteration of the algorithm selects a
group of elements that may be rounded together to preserve both symmetry and the row
and column sums. An iteration of the algorithm reduces the number of non-integers and
preserves the invariant properties of half-integrality, symmetry, and row and column sums.

The method is stated in Algorithm 1. Given this description, it remains to show that
the algorithm produces a solution with the desired properties. We do this in two parts.
First we show that, at the end of each iteration, the new matrix still possesses the invariant
properties—namely, we show that it is symmetric, half-integer, has a diagonal within one
of the original, and has the same row sums. Second, we demonstrate that the algorithm
terminates.

X X X X X X X X
/?\ ¢ E) = —

X X . Xi‘% X P= __o_-___ >
S X< * Ol ox |
SV A =X N | X "Edges" added to complete cycle are

X X Ny ey not bold-faced.

x = half-integer matrix element
X X X X

Figure 5: Possible “cycles” identified by Algorithm 1.

Although the algorithm is stated directly in terms of the matrix, it may be helpful to
view it another way. We can construct a graph G whose nodes correspond to non-integer
matrix elements and whose edges join two nodes if their associated non-integers are in the
same row or column. Thus, a node is associated with a unique matrix element, so we may
also use the term “node” to refer to its corresponding matrix element. The algorithm works
to construct two paths, P and P, that are “reflections” or “transposes” of eachother in
the sense that when P visits a node, P visits the node across the diagonal from it. The
algorithm builds these two paths until ultimately they close to form either one big cycle or
two disjoint cycles. Figure 5 depicts each of the two cases. An iteration ends in the column
scanning step when the two paths can be joined to form a single cycle. An iteration ends in
the row scanning step when the paths close on themselves to form two separate cycles. The
cycles visit each row and each column an even number (possibly zero) of times, and a row
or column that is visited is visited twice consecutively. The properties of the paths and the
cycles built from them allow us to use parity arguments to demonstrate the correctness of

15

Input: a symmetric half-integer matrix X € £"*" with the prescribed (integer) row and column sums.
Set vector d € R™ to zero.
While there are non-integers in X do:

Initialization:

Let P and P be ordered lists of elements of X.

Select some non-integer x; ; to begin.

Set P =u;; and P = z;,; and mark z; ; and z;,; as visited.

Set the ‘magic column’ m to be j.

Set the current row r = 1.

Scan row r:
If 2, ,, is an unmarked non-integer then:
Mark z, ., and Z, ;.
Set P = P, x, ,, and set P = P,xmﬂ,
Do rounding (case 1):
Beginning with the first element of P,
round the elements alternately up and then down.
Beginning with the first element of P.
round the elements alternately up and then down.
Goto END.
Else, select some unmarked non-integer element in row r, say z,
Mark z,; and z .
Set P = Pz, and set P = P, xy, ,
Let c = k.

Scan column c:
If 2, ¢ is an unmarked non-integer then:
Mark z,, . and ¢ .
Set P = P, x,, . and set P= P,:L‘C’m
Do rounding (case 2):
Ifd, >0,
Beginning with the first element of P,
round the elements alternately down and then up.
Beginning with the first element of P.
round the elements alternately down and then up.
Set d,,, = 0, and decrease z,, ,, by one.
Ifd, =0,
Beginning with the first element of P,
round the elements alternately up and then down.
Beginning with the first element of P.
round the elements alternately up and then down.
Set d,,, = 1, and increase z,, ,, by one.
Goto END.
Else, select some unmarked non-integer element in column c, say zy .
Mark zy,. and z. .
Set P = P, xy, . and set P= P,:rc,k
Let r = k.
Goto Scan row.
END

Algorithm 1: Symmetric Rounding

16

the algorithm. These properties arise because the matrix is half-integer, which means that
the non-integers are indistinguishable from eachother, so our algorithm merely has to keep
elements are properly “paired” when it rounds.

We now verify that Algorithm 1 produces a solution with the desired properties. We
begin by showing that each iteration preserves the invariant properties. We consider that
an iteration ends when it reaches the END statement. The only two ways to reach the end
is via one of the two rounding steps. Thus, to complete an iteration, we must round some
element(s) of the matrix. In the next two propositions, we show how the particular choice
of elements to round in an iteration and the way they are rounded preserves the invariant
properties from one iteration to the next.

Proposition 1 If we begin an iteration with a symmetric half-integer matriz with integer
row sums and the iteration ends after performing a case 1 rounding, then the matriz produced
has the same row sums and diagonal as when the iteration began, and it is symmetric and
half-integer.

(Proof.) Since the matrix is half-integral at the beginning of the iteration, and we do
nothing more than round some of its elements, the new matrix is half-integral, as well.

The only elements that we round are in P and P. P and P are reflections of eachother
in the sense that when P visits z;;, P visits xj;. Thus, they visit the same sequence of
paired elements, but visit different elements of the pair. Since the sequence of roundings is
the same in both P and P, we are assured that pairs of elements are rounded together and
in the same direction. Thus, the new matrix remains symmetric. The diagonal is unchanged
because it is necessarily all integer, so there can be no diagonal elements in P or P.

To see that an iteration preserves row sums, note that P visits each row and each column
an even number of times and a row or column that is visited is visited twice consecutively.
(Note that for visits to column m to be ‘consecutive’, we need to view P as a cycle.) By
alternating the direction in which we round the elements of P, the number of round-ups in
any row or column must equal the number of round-downs. Since the matrix is half-integer,
the non-integer part of any non-integer is the same, so the row sum is preserved as long
as the number of round-ups is equal to the number of round-downs. Thus, rounding the
elements of P preserves row sums. The same type of argument holds for P.

Proposition 2 If we begin an iteration with a symmetric half-integer matrixz with integer
row sums and the iteration ends after performing a case 2 rounding, then the matriz produced
has the same row sums as when the iteration began, has a diagonal within one, and s
symmetric and half-integer.

(Proof.) The matrix is symmetric and half-integer for the same reasons as above. Demon-
strating the row sum condition is analogous, but slightly more complicated, than for case 1.
We once again examine P and P and note that both P and P visit all rows and columns

17

ercept m an even number of times. In addition, except for P’s first visit to column m
and last visit to row m, any row or column visited is visited twice consecutively. Thus,
the alternating rounding of P preserves all row and column sums except m. If the first
element of P is rounded up, then the sum across row (and column) m is increased by a
half; otherwise, it decreases by a half. Similarly, P visits all rows and columns except m an
even number of times, and visits are paired except for the first visit to row m and the last
visit to column m. When the first element of P is rounded up, the sum across row (and
column) m increases by a half; otherwise, it decreases by that amount. In total, rounding
the elements of P and P either increases or decreases the sums across row and column m
by one. We compensate by altering the diagonal element x,,,,. Note that d is an indicator
vector whose m!” element is one if 2,,,, is already one greater than its original value, and is
zero when x,,,, is at its original value. Thus, if z,,, has already been increased, we begin
by rounding the elements of P and P up and preserve the row sum by restoring ,,, to
its original value. Otherwise, we begin rounding the elements of P and P down and fix
the row sum by increasing x,,,,, by one. Thus, the rounding does preserve row sums. It
also keeps the diagonal within one of its original value because the indicator dy, prevents us
from either increasing or decreasing x,,, twice consecutively. Hence, the diagonal iterates
between its original value and its original value plus one.

Theorem 6 If the algorithm begins with a symmetric half-integer matriz with integer row
sums, then it terminates with a symmetric integer matriz whose row sums are the same as
the original matriz and whose diagonal elements are within one.

Propositions 1 and 2 guarantee that as long as we begin an iteration with a symmetric,
half-integer matrix with integer row sums, and we reach one of the two rounding steps,
we end the iteration with a symmetric, half-integer matrix with the same row sums and
diagonals within one of the initial matrix. Moreover, each iteration reduces the number
of non-integers whenever it reaches a rounding step. Thus, proving the claim reduces to
showing that each iteration reaches one of the two rounding steps.

Assume that at some point we cannot reach one of the rounding steps for the first time.
This means that we have reached a point where we cannot find another unvisited non-integer
in our current row or column. Let’s examine both cases. Suppose that we are scanning row
r and are unable to find another unmarked non-integer in row r. So far, P has visited row
r an odd number of times and P has visited row m an odd number of times. They visit
all other rows an even number of times. Thus, either ~ has an odd number of non-integers,
which contradicts the fact that the initial matrix is symmetric and half-integer with integer
row sums, or 7 = m. However r # m, because upon reaching row m the iteration would
have terminated in rounding case 2. Thus, this situation cannot occur.

Now suppose we are scanning column ¢ and are unable to find another unmarked non-
integer. When scanning a column, it is the case that P has visited all columns an even
number of times, while P has visited columns ¢ and m an odd number of times and all
others an even number of times. It cannot be the case that ¢ = m because otherwise the
iteration would have terminated in rounding case 1. Thus, the fact that we cannot find

18

another unmarked non-integer in column c¢ contradicts the assumption that we began the
iteration with a symmetric half-integer matrix with integer row sums.

Therefore, each iteration is able to reach one of the two rounding steps. Since each
iteration is guaranteed to reduce the number of non-integers and produce a matrix with the
desired properties, the entire algorithm will ultimately produce an integer matrix with the
desired properties.

3.3 Sample Results

Include some sample computational results here. Describe what we did and why: piece-wise
linearization, followed by heuristic.

In results note: 1) problem sizes and largest b; (they’re pretty big, so a pseudo-
polynomial algorithm probably won’t be appropriate); 2) time to solve netflow time to
do rounding 3) in how many cases is the forecast outside the range given by z;; and z;; 4)
what is the worst violation of this range constraint 5) how many diagonals get changed.

3.4 Matching revisited

Algorithm 1 guarantees that, if a matrix is balanceable, we can find a symmetric integer
matrix that changes no diagonal element by more than one. For the related b-matching
problem, this means that there exists some b, such that

bi € {bj,b; —1} Vi =1, ..., n,
for which G has a perfect b-matching. Algorithm 1 gives us one such b.

Ideally, we’d like to select a b that yields a matching that is, in some sense, optimal. The
ability to change diagonal matrix elements can be incorporated in the associated b-matching
model by placing loops at nodes corresponding to rows in which a diagonal element may
vary. The variables associated with the loops have upper bounds that effectively limit the
change in any associated diagonal element. In the problem that we’ve presented, all of these
upper bounds are equal to one, but more general models could allow diagonal elements to
be increased or decreased within individually specified bounds. Changes in the diagonal
elements may be penalized in the objective, just as they are for other matrix elements.

It is straightforward to allow diagonal elements to vary by larger amounts in the context
of the heuristic approach, as well. If none of the diagonal elements are fixed at a prescribed
value, then the heuristic also delivers a feasible solution. To do this, we include variables
corresponding to diagonal elements in the network flow model. If the i*! diagonal element
is allowed to vary between [; and u;, the associated variable in the network flow model will
have bounds /; and u;. Given feasible integer solution for the network flow problem, we
average across the diagonal and apply a slight modification of Algorithm 1. The indicator
d; in the algorithm will now be -1, 1, or 0, depending upon whether the diagonal is at its

19

lower bound, its upper bound, or between bounds. Now, if the diagonal must be changed
to preserve row and column sums in a rounding step, we round in a direction that would
ensure that the diagonal remains within its bounds and update d; to reflect the new status
of the diagonal element.

Loops may also be used to model flexibility in the row sum conditions. If the row sums
are allowed to fall within some range, the constraints (11) are replaced by

I U .
biSinj+iji§bi, Vi= 1, ..., n,
Jj>i Jj>i

where bF and bY denote the allowable range. Censor and Zenios consider allowing range
constraints in the context of standard matrix balancing models in [6]. Range constraints
in symmetric matrix balancing can be interpreted in the context of the b-matching model
as follows: the b-value at node i becomes bY and there is a loop at node i whose corre-
sponding variable has a lower bound of 0 and an upper bound of bg] — biL. A feasible perfect
bY -matching corresponds to a symmetric integer matrix whose row and column sums fall
into the prescribed range. Once again, a modification to the network flow model, yields
an optimal continuous solution to the ranged problem. Network flow solutions are easily
modified to yield feasible symmetric integer solutions when every upper bound is larger
than its associated lower bound.

Finally, the matching model can be adapted to find solutions that minimize the number
of changes to the diagonal. We begin with a graph formed in the usual way, then we add
a new node v and a new arc between v and every other node. These new arcs have upper
bounds of 1. We also add a loop at node v. If we let b, be the number of rows in our
associated matrix, a maximum weight perfect (capacitated) b-matching, where the weight
on the loop at node v is 1 and all other weights are zero, corresponds to a solution that
changes the diagonal as little as possible. Once we know how many times the diagonal
must change, we can solve a separable nonlinear perfect b-matching in this graph to find a
symmetric integer matrix that is close to our original matrix and changes as few diagonals
as possible. To do this, we replace the objective with one that penalizes deviations from
2(zij + zji), and include a lower bound on the variable associated with the loop at node
v. This lower bound is equal to the number of rows in the corresponding matrix minus
the number of required diagonal changes. For the small example provided in Section 1, we
know that one diagonal element must be changed in order to find a balanced, symmetric,
integer matrix. Figure 6 shows the associated b-matching model, if our goal is to find a
solution that changes only one diagonal element.

4 Conclusions

It’s clear that a wide range of symmetric matrix balancing problems can be modeled in
the context of b-matching. The problem of forecasting symmetric services that we have
presented is one ready application.

20

Upper bound=1

Lower bound=2

Figure 6: b-matching model that changes only one diagonal element.

We’ve used this application to motivate the discussion of several simple variations on
classical matrix balancing models. The two twists that we’ve considered are symmetry and
integrality. In Table 1, we summarize the effect of adding these constraints individually
and in tandem. The conditions that we imposed on allowable changes to diagonal elements
don’t change the nature of the formulation, so they are not included in Table 1. The
constraints on diagonal elements do affect feasibility. However, we’ve shown that, unless
elements are fixed, any balanceable instance of the problem admits an integer symmetric
feasible solution.

H Additional Constraints ‘ Solution technique H
integrality integer convex separable network flow
symmetry convex separable network flow
integrality and symmetry | convex separable perfect b-matching

Table 1: Added constraints and the effect on solution technique.

It’s clear that fast methods for solving convex separable b-matching problems have a
ready application in forecasting demands for symmetric services. The viability of these
methods for realistic instances needs to be explored. In the meantime, the heuristic method
that we have described for obtaining an “almost-perfect” b-matching satisfies our immediate
needs. These heuristics are employed in the forecasting tool described in [24].

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

21

2]

[6]

[7]

[18]

[19]

M. Bacharach. Bi-proportional Matrices and Input-Output Change, Cambridge Univer-
sity Press, U.K., 1970.

A. Bachem and B. Korte. “An algorithm for quadratic optimization over transportation
polytopes”, Zeitschrift fur Angewante Mathematik und Mechanik, 58, 549-461.

A. Bachem and B. Korte. “Minimum norm problems over transportation polytopes”,
Linear Algebra and its Applications, 31, 103—-118, 1980.

M. L. Balinski and G. Demange. “Algorithms for proportional matrices in reals and
integers”, Mathematical Programming, 45, 193-210, 1989.

Y. Censor and S. A. Zenios. “Interval-constrained matrix balancing”, Linear Algebra
and its Applications, 150, 393-421, 1991.

S. T. Cosares and D. S. Hochbaum. “Strongly polynomial algorithms for the quadratic
transportation problem with a fixed number of sources”, Mathematics of Operations
Research, 19, 94-111, 1994.

R. W. Cottle, S. G. Duvall, and K. Zikan. “Lagrangean relaxation algorithm for the
constrained matrix problem”, Naval Res. Log. Quart., 33, 55-76, 1986.

L. H. Cox and L. R. Ernst. “Controlled rounding”, INFOR, 20, 423-432, 1982.

D. S. Hochbaum and J. G. Shantikumar. “Convex separable optimization is not much
harder than linear optimization”, Journal of the ACM, 37, 843-862, 1990.

J. G. Klincewicz. “Implementing an exact Newton method for separable convex trans-
portation problems”, Networks, 19, 95-105, 1989.

L. Lovasz and M. D. Plummer. Matching Theory, North-Holland, Amsterdam, 1986.
A. B. Marsh, III. Matching Algorithms, Johns Hopkins University, Ph.D Thesis, 1979.

M. Minoux. “A polynomial algorithm for minimum quadratic cost flow problems”,
European Journal of Operational Research, 18, 377-387, 1984.

M. Minoux. “Solving integer minimum cost flows with separable convex cost objective
polynomially”, Mathematical Programming Study, 26, 237-239, 1986.

R. D. C. Monteiro and I. Adler. “Interior path-following primal-dual algorithms. Part
IT: Convex quadratic programs”, Mathematical Programming, 44, 43—66, 1989.

J. M. Mulvey and S. A. Zenios. “GENOS 1.0: A generalized network optimization
system”, Decision Sciences Working Paper 87-12-3, The Wharton School, University
of Pennsylvania, Philadelphia, PA.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization, John
Wiley & Sons, New York, 1988.

M. W. Padberg and M. R. Rao. “Odd minimum cut-sets and b-matchings”, Mathemat-
1cs of Operations Research, 7, 67-80, 1982.

22

[20]

[21]

M. H. Schneider and S. A. Zenios. “A comparative study of algorithms for matrix
balancing”, Operations Research, 38: 439-455, 1990.

A. Schrijver. “Max-min results in combinatorial optimization”, in Mathematical Pro-
gramming the State of the Art, A. Bachem, M. Grotschel, and B. Korte, eds., Springer,
1983.

W. T. Tutte. “The factors of graphs.”, Canadian Journal of Mathematics, 4, 314-328,
1982.

O. Wasem. “Narrowband interwirecenter forecasting tool: methodology”, Bellcore
Technical Memorandum TM-ARH-023543, November, 1993.

0. J. Wasem, A. M. Gross, G. A. Tlapa. “Forecasting broadband demand between
geographic areas”, IEEE Communications Magazine, 33, Number 2, 50-57, 1995.

S. A. Zenios, A. Drud, J. M. Mulvey. “Balancing large social accounting matrices with
nonlinear network programming”, Networks, 19, 569-585, 1989.

23

